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ABSTRACT . A
Laboratory experiments on wave propagation through saturated and partially saturated porous media have
often been conducted on porous cylinders that were initially fully saturated and then allowed to dry while
continuing to acquire data on the wave behavior. Since it is known that drying typically progresses from the
outside to the inside, a sensible physical model of this process is concentric cylinders having different satu-
ration levels — the simplest example being a fully dry outer cylindrical shell together with a fully wet inner
cylinder. We use this model to formulate the equations for wave dispersion in porous cylinders for patchy
saturation (i.e., drainage) conditions. In addition to multiple modes of propagation obtained numerically from
these dispersion relations, we find two distinct analytical expressions for torsional wave modes.

INTRODUCTION

The classic work of Pochhammer (1876) and Chree (1886) gave exact solutions for wave propaga-
tion in elastic rods. When the rod is instead a porous cylinder with fluid-filled pores, the equations of
linear elasticity do not describe all possible motions of the fluid/porous-solid mixture. Biot’s theory
of fluid-saturated porous media provides a continuum theory, permitting the fluid and solid compo-
nents to move independently and accounts approximately for the attenuation of waves due to viscous
friction. Gardner (1962) used Biot’s theory (Biot 1956a; Biot 1956b) to study long-wavelength ex-
tensional waves in circular cylinders. Gardner considered only the low-frequency regime where the
second bulk compressional mode predicted by Biot’s theory is diffusive in character. Gardner also
limited consideration to the case of open-pore surface boundary conditions.

The present work is based in part on another paper by Berryman (1983), in which both open-
pore and closed-pore surface boundary conditions for the fluid-saturated porous cylinder were stud-
jed. Here we consider only the open-pore surface, but we allow non-uniform or patchy saturation
(Berryman et al. 1988; Knight and Nolen-Hoeksema 1990; Knight et al. 1998; Johnson 2001) in-
side the cylinder. In particular, it is quite common to study partial saturation in the laboratory under
drainage or drying conditions wherein an initially fully saturated porous cylinder is allowed to dry
while continuing to acquire data on the cylinder’s modes of oscillation. We want to model this be-
havior explicitly. The simplest such model is concentric cylinders with a fully dry outer cylindrical



shell enclosing a fully liquid-saturated inner cylinder.

We present the equations of poroelasticity, and then show the forms of the equations needed for
cylindrical geometry. Appropriate boundary conditions for our problem are discussed. Equations are
subsequently formulated to determine the extensional and torsional modes of concentric poroelastic
cylinders under conditions of partial saturation.

EQUATIONS OF POROELASTICITY

For long-wavelength disturbances (A >> h where h is a typical pore size) propagating through
such a porous medium, we define average values of the (local) displacements in the solid and also
in the saturating fluid. The average displacement vector for the solid frame is u while that for the
pore fluid is uy. The average displacement of the fluid relative to the frame is w = ¢(u — uy). For
small strains, the frame dilatation is

e=e;+e+e=V-u, 1)
where ez,ey,¢e, are the Cartesian strain components. Similarly, the average fluid dilatation is
es=V-us @
(ef also includes flow terms as well as dilafation) and the increment of fluid content is defined by
(=-V-w=¢(e—ej) 3

With these definitions, Biot (1962) shows that the strain-energy functional for an isotropic, linear
medium is a quadratic function of the strain invariants (Love 1944) I, = e, I3, and of ¢ having the
form

2F = He? — 2Ce( + M(¢? — 4uly, 4)
where
1

and v;,7y,7Y. are the shear strain components. The stress-strain relations which follow from (4) are

OF ' ‘
TZI=6——=H6—2p(ey+ez)—CC, (6)
€z
and similarly for 7y,7;,, while
OF .
Tzz = ’37 = WYy Q)
v
and similarly for 7y;,7zy, and finally
OF

The 7;; are average Cartesian stresses in the saturated porous material and py is the isotropic pres-
sure in the pore fluid. :



With time dependence of the form exp(—iwt), the coupled wave equations that follow from
(6)-(8) in the presence of dissipation are .

w?(pu + pyw) = CV( — (H — p)Ve — uV2u,
w?(pju+qw) = MV({ - CVe, )

where p = ¢ps + (1 — ¢p)pm and ¢ = p5 [a/B + iF(€)n/sw). The kinematic viscosity of the
liquid is n; the permeability of the porous frame is &; the dynamic viscosity factor is given, for our
choice of sign for the frequency dependence, by F(£) = L{eT(€)/[1 +2T°(€)/i€]}, where T(€) =
gc:_—r"((g:__m?lﬁ,(f) and ¢ = (wh?/n) %. The functions ber(¢) and bei(£) are the real and imaginary parts
of the Kelvin function. The dynamic parameter h is a characteristic length generally associated with
and comparable in magnitude to the steady-flow hydraulic radius. The tortuosity o > 1 is a pure
number related to the frame inertia which has been measured by Johnson et al. (1982) and has also

been estimated theoretically by Berryman (1980).
The coefficients H, C, and M are given by (Gassmann 1951; Biot and Willis 1957; Geertsma

and Smit 1961; Stoll 1974)

H=K+§u+(Km—K)2/(D—K), (10)
C = Kn(Km - K)/(D-K), (11)
and
M =K% /(D - K), - (12)
where
D = K[l + ¢(Km/Kf — 1)} | (13)

Equations (10)-(13) are correct as long as the porous material may be considered homogeneous on
the microscopic scale as well as the macroscopic scale.

To decouple the wave equations (9) into Helmholtz equations for the three modes of propaga-
tion, we note that the displacements u and w can be decomposed as

u=Vr+Vxfg w=Vy+Vx%, (14)

where T, 1 are scalar potentials and ﬁ, % are vector potentials. Substituting (14) into (9), we find
(9) is satisfied if two pairs of equations are satisfied:

(V2 +kB)f=0, %=-psBla (15)
and
(V2+K2)AL =0. (16)
The wave vectors in (15) and (16) are defined by

k2 = w?(p — p}/a)/p (17)
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and

=3 {o+fF 10— 17 +ded)?], as

b=w?(pM — p;C) /A, c = w?(osM — qC)/A,
d=w?(psH - pC)/A, f =w?(gH — psC)/A, (19)

with A = MH — C2. The linear combination of scalar potentials has been chosen to be Ay =

Ty = d/(k} — b) = (ki — f)/c. (20)

With the identification (20), the decoupling is complete.

Equations (15) and (16) are valid for any choice of coordinate system. They may be applied to
boundary value problems with arbitrary symmetry. Biot’s theory of poroelasticity will therefore be
applied to cylinders in the next section.

EQUATIONS FOR A POROUS CYLINDER

To work most easily in cylindrical geometry, we rewrite the stress-strain relations (6)-(8) in cylin-
drical coordinates. If z is the coordinate along the cylinder axis while rand @ are the radial and
azimuthal coordinates, it is not difficult to show that

OF
Tor = 0. = He — 2u(eq + ¢;) — C¢, (21
(e _ v laur)
d d
Trz=ﬂ(a_1:+ a'u:)’ 23)

and (8) remains unchanged. The stress components T, 7gg, and 7y, are not of direct interest in the
present application. The dilatations are given by

e=er+ea+ez, (24)
where
du, ur 10ug Ou,
= == — —_— = . 2
&= €= + ra0’ =T 5z (25)

We redefine potential ﬁ in terms of two scalar potentials according to
B =261 +V x (28), (26)
where both §; satisfy
(V2+k2)B; =0 for i=12 @7



For the problem of interest here, we will have two distinct regions: The first region is a cylinder
centered at the origin, within which solutions of (16) and (27) must be finite at the origin. Results
take the form

Ay = ax Jo(j1) expi(kz2z — wt), 28)
Br = 1sJo(js) expi(k;z — wi), : 29
Bo = (as/ik;)Jo(js) expi(k.z — wt), 30)
where
J+ = kirr, Js = kerr 31)
and
ki, =k -k, K=k K. (32)

Jo is the zero-order Bessel function of the first kind. The coefficients o, o, s, are constants to be
determined from the boundary conditions.

The second region is a cylindrical shell around the first region. In this region, the factors k4
and k, take different values from the those in the central region, indicated by k3 and k; (where
* means air-filled, and does not ever mean complex conjugate in this paper). Furthermore, two
linearly independent solutions of the equations are allowed, i.e., both Jy and Yp (the Bessel function
of the second kind, sometimes known as the Neumann function). In the outer shell, we have four
coefficients for Jy and four for Yy, all of which must also be determined by the boundary conditions.

Noting that '

T =(4+-A4.)/T+-T-),
¢ = (447~ —A_Ty)/(T- —-T4) ' (33)

from the definitions of A, and substituting (28)-(30) and (33) into (14), and the result into (8) and
(21)-(23), we finally obtain ‘

Tro = muYs = pkin[Jo(Gs) = 2J1(4s)/ds)s 34
and
Trr = G1104 + Q120 + a1305, (3%
—pf = G210+ + G220 + G230, (36)
Trz = Q3104 + a3z + azzog, (37)
where

(T4 ~T-)an = [(CT— ~ H)K + 2ukZ] Jo(it)
24tk J1 (G ), G8)



(T4 ~T_)ary = —2uk2  J1(5-)/3-

+UH-cnmi—m@mex | (39)
a13 = —2pky [Jo(3s) — J1(4s) /4], (40)
(T4 — )z = (MT- — )k Jo(j+), (41)
(T4 —T-)ag = (C — MT)E2Jo(5-), 42)
(T4 — T )asy = ~2ipk.kir J1(54), (43)
(T4 — T-)asz = 2ipk;k_J1(5-), (44)
iksags = —p(k} — 2k2)korJ1 (3s), (45)

and a3 = 0. There is an implicit factor of exp i(k,z — wt) on the right-hand side of (34)-(37).

Berryman (1983) has shown that a11, @13, a31, and a3 reduce in the limit ¢ — O to the corre-
sponding results for isotropic elastic cylinders by Pochhammer (1876), Chree (1886), Chree (1889),
Love (1944), and Bancroft (1941), as they should.

BOUNDARY CONDITIONS
While appropriate boundary conditions for use with Biot’s equations are not obvious, Deresiewicz
and Skalak (1963), Berryman and Thigpen (1985), and Pride and Haartsen (1996) have studied
boundary conditions for saturated and partially saturated porous media and we make use of these
results here.

Deresiewicz and Skalak (1963) show that, if n; is the ]th component of the unit normal to the

interface, the expression
(735 — pylijibi)n; (46)

must be continuous across the interface. The surface integral of (46) is the rate at which work is done
on the material by forces acting on its surface. If the fluids inside and outside the porous material
are the same and if the surface pores are open, the boundary conditions (Deresiewicz and Skalak
1963)

nn = —Pf = —'ﬁfa Tns = 0, 47)
and
iy, + g = Un (48)

guarantee continuity of (46). The pressure and displacement of the exterior fluid are py and U.
In (47)-(48), the subscript » indicates a normal component, while s indicates a shear component
tangential to the surface. We take these conditions (47) and (48) to apply at the exterior boundary of
the outer (air-filled) cylindrical shell. '



If the inner liquid-saturated porous cylinder is surrounded by a poroelastic material with a dif-
ferent fluid saturating the pores (air in this case), the boundary conditions at the interface between
liquid-filled and air-filled regions are (Deresiewicz and Skalak 1963)

Tnn - Tnnv Tﬂ Tns) (49)
G = 0%, U= Uk (50)

and
U =1y,  Pf =D} (51)

The solid stress and displacement in the adjacent poroelastic material are 7* and u*, and the corre-
sponding increment of fluid content and pressure are wp, and p- All these conditions are required
to assure continuity of (46) at the inner boundary.

To apply the boundary conditions (51), we need in addition to (36) the result

Wr = Q4104 + G420 + G430, (52)
where
(T4 —T)agr = kyr J1(54)T-, (53)
(T4 — P )age = —k-rJ1(5- )T+, (54)
a43 = ksp 1 (js)pf/Q- (55)

The remaining stress conditions (49) are determined by (35) and (37).
To apply the boundary conditions (50), we need the explicit expressions for the dlsplacement
which follow from (14). The results are of the form

Uy = a5104 + a520— + A530s, (56)
where
(T4 =T )asi = —k4rJ1(d4), (57
(T4 —T-)asy = k—rJ1(5-), (58)
as3 = ker 1 (js)v 59)
and
Uy = G104 + G620~ + Q6305 (60)
where ag; = ago = 0, and
ag3 = k2, Jo(js)/ik. (61)
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FIG. 1. Cross-section of a circular cylinder, where R, = SR, is determined by the
liquid saturation level S.

Both (56) and (60) are needed for extensional waves, while the remaining component,
Ug = M217Ys = ks 1 (js)'Ysa (62)

is needed only for torsional waves. As before, there is an implicit factor of expi(k;z — wt) on the
right-hand side of (53)-(55), (57)-(59), and (61).

1t follows from (34)-(37), (52), and (62) that -y, (for the inner cylinder) and the corresponding
coefficients for the cylindrical shell are all completely independent of the other mode coefficients
and, therefore, relevant to the study of torsional waves, but not for extensional waves. Pertinent
equations for the torsional wave dispersion relation are continuity of the angular displacement ug
and stress 7,4 at the internal interface, and vanishing of the stress 7rg at the external surface.

The final set of equations for the extensional wave dispersion relation involves nine equations
in nine unknowns: The nine unknowns are a.4., a—, o, (coefficients of Jp in the central cylinder),
plus three o*’s (coefficients of Jp) and three 77*’s (coefficients of Yp) for region of the cylindrical
shell. The nine equations are continuity of radial and one tangential stress as well as radial and
one tangential displacement at the interfacial boundary (totaling four conditions), continuity of fluid
pressure and normal fluid increments across the same boundary (two conditions), and finally the
vanishing of the external fluid pressure, radial and one tangential stress at the free surface (three
conditions). The extensional wave dispersion relation is then determined as in Berryman (1983) by
those conditions on the wavenumber k, that result in vanishing of the determinant of the coefficients
of this 9 x 9 complex matrix.

TORSIONAL WAVE EXAMPLE

Of the 81 elements in the matrix determining the extensional dispersion relation, there are 69 that
will in general be nonzero. Length constraints on the present manuscript will therefore preclude
further studies of this mode here. On the other hand, the torsional mode (which is trivial for a -
simple cylinder) now is determined by a 3 x 3 system, of which 8 elements are in general nonzero.
This system is therefore similar in size and difficulty to the cases studied earlier by Berryman (1983)
for extensional waves in a simple poroelastic cylinder.

We assume that the cylinder has liquid saturation level S = (R1/Rz)?, where R; is the radius
of the cylinder and r = Rj is the location of the liquid-gas interface (see Fig. 1). The dispersion
relation for torsional waves is then given by

mi;(Rz) n};(R2) 0
—m},(R1) —nt;(R1) mu(R1) | =0, (63)
—m3;(R1) —n3;(R1) ma1(R1)



where m1; and my; are given by (34) and (62). The coefficients mj, and mj, have the same
functional forms as m1; and mo;, but the constants are those for the shell, rather than the inner
cylinder. Similarly, n]; and ni, are just the same as m}, and m{, except that Jo and Jp are replaced
everywhere by Y, and Y], respectively.

Now we notice immediately that there could be two elementary solutions of (63), one when
m3, (R2) = nf,(R2) = 0 (exterior condition) and another when my; (R;) = m2;(R;) = 0 (interior
condition). First, the interior condition is satisfied, for example, when ks, = 0 or, equivalently, when
k% = k2. This corresponds to a torsional mode of propagation having wave speed and attenuation
determined exactly by the bulk shear wave in the interior region, but the interior region is not moving
since ks, = 0 also implies that ug = 0 from (62). Thus, the interior condition results in the drained
shell twisting around a stationary inner liquid-saturated cylinder. Second, the exterior condition is
similarly satisfied when k%, = O or, equivalently, when k2 = (k*)2. This condition looks at first
glance as if it might be spurious because kj, = 0 suggests that uy at the exterior boundary might
vanish identically, and then this would correspond to a trivial solution of the equations. However,
looking closer, this is not the case, because at the external boundary

up = ky, [J1(35)7s + Y1(55)€5) (64)

so as ki, — 0, the first term on the right hand side of (64) does vanish, both because kj, — 0 and
also because J1(j;) — 0. But the second term does not vanish in this limit because |Y7(j3)| —
2/7ky Ry — oo as k}, — 0, and the product gives the finite result: 2/7Rjy. So this condition is
not spurious, and corresponds to a torsional wave propagating with the speed and attenuation of the
bulk shear wave speed in the drained shell material. _

The important conclusion is that arbitrary linear combinations of these two elementary solutions
can be excited in laboratory torsional experiments and these results must therefore be used to analyze
data from drainage experiments.

SUMMARY

Biot slow-wave effects in layered materials have been studied previously by Pride et al. (2002) and
many others found in their references. The present work is motivated by the desire to understand
how fluids interacting with common poroelastic systems may create viscous attenuation in partially
saturated (and especially in patchy saturated) cylinders. These effects can then be observed in the
attenuation of extensional and torsional waves. There are large quantities of such data already avail-
able, and one thrust of our future work will be to analyze these data in light of the methods developed
here.
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